99 research outputs found

    Sparser Johnson-Lindenstrauss Transforms

    Get PDF
    We give two different and simple constructions for dimensionality reduction in 2\ell_2 via linear mappings that are sparse: only an O(ε)O(\varepsilon)-fraction of entries in each column of our embedding matrices are non-zero to achieve distortion 1+ε1+\varepsilon with high probability, while still achieving the asymptotically optimal number of rows. These are the first constructions to provide subconstant sparsity for all values of parameters, improving upon previous works of Achlioptas (JCSS 2003) and Dasgupta, Kumar, and Sarl\'{o}s (STOC 2010). Such distributions can be used to speed up applications where 2\ell_2 dimensionality reduction is used.Comment: v6: journal version, minor changes, added Remark 23; v5: modified abstract, fixed typos, added open problem section; v4: simplified section 4 by giving 1 analysis that covers both constructions; v3: proof of Theorem 25 in v2 was written incorrectly, now fixed; v2: Added another construction achieving same upper bound, and added proof of near-tight lower bound for DKS schem

    Optimality of the Johnson-Lindenstrauss Lemma

    Full text link
    For any integers d,n2d, n \geq 2 and 1/(min{n,d})0.4999<ε<11/({\min\{n,d\}})^{0.4999} < \varepsilon<1, we show the existence of a set of nn vectors XRdX\subset \mathbb{R}^d such that any embedding f:XRmf:X\rightarrow \mathbb{R}^m satisfying x,yX, (1ε)xy22f(x)f(y)22(1+ε)xy22 \forall x,y\in X,\ (1-\varepsilon)\|x-y\|_2^2\le \|f(x)-f(y)\|_2^2 \le (1+\varepsilon)\|x-y\|_2^2 must have m=Ω(ε2lgn). m = \Omega(\varepsilon^{-2} \lg n). This lower bound matches the upper bound given by the Johnson-Lindenstrauss lemma [JL84]. Furthermore, our lower bound holds for nearly the full range of ε\varepsilon of interest, since there is always an isometric embedding into dimension min{d,n}\min\{d, n\} (either the identity map, or projection onto span(X)\mathop{span}(X)). Previously such a lower bound was only known to hold against linear maps ff, and not for such a wide range of parameters ε,n,d\varepsilon, n, d [LN16]. The best previously known lower bound for general ff was m=Ω(ε2lgn/lg(1/ε))m = \Omega(\varepsilon^{-2}\lg n/\lg(1/\varepsilon)) [Wel74, Lev83, Alo03], which is suboptimal for any ε=o(1)\varepsilon = o(1).Comment: v2: simplified proof, also added reference to Lev8

    Bounded Independence Fools Degree-2 Threshold Functions

    Full text link
    Let x be a random vector coming from any k-wise independent distribution over {-1,1}^n. For an n-variate degree-2 polynomial p, we prove that E[sgn(p(x))] is determined up to an additive epsilon for k = poly(1/epsilon). This answers an open question of Diakonikolas et al. (FOCS 2009). Using standard constructions of k-wise independent distributions, we obtain a broad class of explicit generators that epsilon-fool the class of degree-2 threshold functions with seed length log(n)*poly(1/epsilon). Our approach is quite robust: it easily extends to yield that the intersection of any constant number of degree-2 threshold functions is epsilon-fooled by poly(1/epsilon)-wise independence. Our results also hold if the entries of x are k-wise independent standard normals, implying for example that bounded independence derandomizes the Goemans-Williamson hyperplane rounding scheme. To achieve our results, we introduce a technique we dub multivariate FT-mollification, a generalization of the univariate form introduced by Kane et al. (SODA 2010) in the context of streaming algorithms. Along the way we prove a generalized hypercontractive inequality for quadratic forms which takes the operator norm of the associated matrix into account. These techniques may be of independent interest.Comment: Using v1 numbering: removed Lemma G.5 from the Appendix (it was wrong). Net effect is that Theorem G.6 reduces the m^6 dependence of Theorem 8.1 to m^4, not m^
    corecore